
PENETRATION TEST REPORT

Example Application

Winston Wagner
Haitingergasse 12
3400 Klosterneuburg

Contact:
Phone: 0123456789
Mail: hello@winstonwww.com

Example Customer
Attn. Firstname Lastname
Hermanngasse 29
1070, Vienna

Vienna, November 18, 2024

Report Version: 1.0

CONFIDENTIAL

Table of Contents
Team . 3

List of Changes . 3

Disclaimer . 3

Executive Summary . 4

Overview . 4

Identified Vulnerabilities . 5

Methodology and Scope . 6

User Accounts and Permissions . 6

Findings . 7

C1: Blind SQL Injection in Password Reset Endpoint . 7

C2: HTTP Host Header SSRF . 9

H1: Session Fixation . 11

M1: Missing or Incorrectly Configured HTTP Security Headers 13

M2: User Enumeration . 15

M3: Web Cache Deception . 17

L1: Verbose Error Messages . 19

CONFIDENTIAL Example Application 2

Team
Name Contact Role

Winston Wagner hello@winstonwww.com Lead Pentester

List of Changes
Version Description Date Author

0.1 Initial Creation Nov 12, 2024 Winston Wagner

0.9 Review Nov 15, 2024 Winston Wagner

1.0 Published Nov 18, 2024 Winston Wagner

Disclaimer
This test is has been planned using a time-box approach, whereby the goal was to identify as many
vulnerabilities as possible in a reasonable timeframe. However, given the nature of cybersecurity, there are no
guarantees for completeness for the findings listed in the report above. Futhermore, this test provides only a
snapshot in time, future risks can not be derived from it. Finding a wide range of vulnerabilities has been
prioritized over finding all occurances of one vulnerability in a category. It is therefore advised to check the
source code for similar patterns after identifying the cause of a finding mentioned in this report.

CONFIDENTIAL Example Application 3

Executive Summary

Overview
The penetration test conducted on the web application identified significant security risks, including two critical
vulnerabilities, which demand immediate attention to protect sensitive data and system integrity.

A SQL injection vulnerability was identified in the password reset functionality, where attackers can manipulate
the system by sending specially crafted requests. This vulnerability can allow an attacker to extract sensitive
information such as usernames, passwords, and other data from the database, modify the data stored in the
database, and perform reconnaissance to discover the structure of the database.

The application was vulnerable to a server-side request forgery (SSRF) attack due to improper handling of the
Host header. Attackers can manipulate this header to send requests to internal resources, exposing sensitive data
or causing further exploitation of internal services. This vulnerability can allow attackers to interact with services
and systems that should be inaccessible from the public internet. A reachable admin service was found, allowing
attackers to manipulate any user's data.

In course of the assessment, a security flaw was discovered in the application’s session management system,
allowing an attacker to force a victim to use a predetermined session ID. This could let attackers hijack the
victim’s session and access their account without needing their login credentials.

During the penetration test it was found that the web application either lacked essential HTTP security headers
or had them configured insecurely. Without properly configured HTTP security headers, the web application's
attack surface is expanded, increasing the likelihood of an attacker exploiting client-side vulnerabilities.

The web application was vulnerable to user enumeration. User enumeration is a common vulnerability in web
applications that occurs when an attacker can use brute force techniques to determine valid user accounts in a
system. Although user enumeration is a low risk in itself, it still provides an attacker with valuable information
for follow-up attacks such as in brute force and credential stuffing attacks or in social engineering campaigns.

At the time of the security test, the application was vulnerable to web cache deception, where an attacker could
trick the caching mechanism into storing sensitive user-specific pages such as the account dashboard as publicly
accessible cached content. This could allow unauthorized users to access private information.

The application exposed detailed error messages when unexpected inputs are provided. These messages can
reveal sensitive information about the system's internal workings, such as server configuration, database
structure, or code logic. While this issue did not allow direct exploitation, it potentially provides attackers with
useful information for future attacks.

CONFIDENTIAL Example Application 4

Identified Vulnerabilities

CVSS Description Page

C1 9.8 Blind SQL Injection in Password Reset Endpoint 7

C2 9.8 HTTP Host Header SSRF 9

H1 8.1 Session Fixation 11

M1 5.4 Missing or Incorrectly Configured HTTP Security Headers 13

M2 5.3 User Enumeration 15

M3 5.3 Web Cache Deception 17

L1 3.7 Verbose Error Messages 19

Vulnerability Overview
In the course of this penetration test 2 Critical, 1 High, 3 Medium and 1 Low vulnerabilities were identified:

Figure 1 - Distribution of identified vulnerabilities

CONFIDENTIAL Example Application 5

Methodology and Scope
The objective of this penetration test was to assess the security posture of the target web application, identify
vulnerabilities, and provide actionable recommendations to mitigate risks.

The testing followed a gray-box approach, where testers had partial knowledge of the application internals.

All manual and automated tests have been performed to industry standard practices, including, but not limited to
the OWASP Web Security Testing Guide version 4.

The following system was declared to be in the scope of the penetration test by Example Customer

System Description

https://github.com/testsystem Source code with Docker setup

https://testsystem.com Test server

The test server has been set up by the customer as a testing instance solely for this assessment.

Exclusions (Out of Scope)

The following were explicitly excluded from this test:

Systems, subdomains, or applications not explicitly mentioned as in-scope.

Denial-of-Service (DoS) attacks or stress testing of the application or infrastructure.

Social engineering attacks targeting employees or users of the application.

User Accounts and Permissions
Provided Users

User1

User2

User3

•

•

•

•

•

•

CONFIDENTIAL Example Application 6

Findings

C1: Blind SQL Injection in Password Reset Endpoint

Score 9.8 (Critical)

Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Target POST /password-reset

References https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Overview
A SQL injection vulnerability was identified in the password reset functionality, where attackers can manipulate
the system by sending specially crafted requests. This allows them to extract sensitive data by causing
intentional delays in the server’s responses, even though no visible errors or data are returned.

This vulnerability can allow an attacker to:

Extract sensitive information such as usernames, passwords, and other data from the database.

Perform reconnaissance to discover the structure of the database (e.g., tables, columns).

Modify the data stored in the database.

This can lead to data breaches, financial losses, damaged reputation, and disruptions to business operations,
making it a critical risk for organizations.

Details
A Timing-Based Blind SQL Injection vulnerability was discovered in the email parameter of the password-reset
endpoint.

SQL Injection (SQLi) is a vulnerability that occurs when an application fails to properly validate or sanitize user-
supplied input before including it in SQL queries. Attackers can inject malicious SQL code into input fields, URLs,
or headers to manipulate the database. This can allow unauthorized access to sensitive data, modification or
deletion of records, authentication bypass, or even execution of administrative commands on the database.

By injecting SQL payloads that deliberately induce delays in the server's response, it was possible to confirm the
execution of SQL queries without any direct response output. This type of SQL injection leverages time delays to
infer information about the database.

•

•

•

CONFIDENTIAL Example Application 7

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

This vulnerability can be executed unauthorized, meaning no user account is necessary.

Proof of concept:

Two payloads were submitted to the email parameter to demonstrate the time-based blind SQL Injection
vulnerability:

No Delay (False Condition):

email=test@example.com' AND 1=2--

The server responded immediately, indicating no delay.

Induced Delay (True Condition):

email=test@example.com' AND IF(1=1, SLEEP(5), 0)--

The server delayed for 5 seconds before responding, confirming the successful execution of the injected query.

Demonstration of Data Extraction:

By adjusting the SQL payload, an attacker could extract data one character at a time:

Payload to Extract the First Character of the Database Version:

email=test@example.com' AND IF(ASCII(SUBSTRING(@@version,1,1))=52, SLEEP(5), 0)--

If the server delays by 5 seconds, the first character of the database version is 4 (ASCII value 52).

Recommendation

Use prepared statements throughout the application to effectively avoid SQL injection vulnerabilities.
Prepared statements are parameterized statements and ensure that even if input values are manipulated, an
attacker is unable to change the original intent of an SQL statement.

Use existing stored procedures by default where possible. Typically, stored procedures are implemented as
secure parameterized queries and thus protect against SQL injections.

Always validate all user input. Ensure that only input that is expected and valid for the application is
accepted. You should not sanitize potentially malicious input.

To reduce the potential damage of a successful SQL Injection attack, you should minimize the assigned
privileges of the database user used according to the principle of least privilege.

•

•

•

•

CONFIDENTIAL Example Application 8

C2: HTTP Host Header SSRF

Score 9.8 (Critical)

Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Target
HTTP Request Handling

Internal Service Access

References
https://www.invicti.com/learn/host-header-attacks/

https://portswigger.net/web-security/host-header

Overview
The application was vulnerable to a server-side request forgery (SSRF) attack due to improper handling of the
Host header. Attackers can manipulate this header to send requests to internal resources, exposing sensitive data
or causing further exploitation of internal services. This vulnerability can allow attackers to interact with services
and systems that should be inaccessible from the public internet. A reachable admin service was found, allowing
attackers to manipulate any user's data.

This can lead to data breaches, unauthorized access to sensitive user data, and potential system compromise.

Details
If the server did not validate the Host header properly, and forwarded requests to any address inside that
header.

To confirm this the Host header of an intercepted request was edited to contain an attacker controlled domain.
Sending the request resulted in a response containing content from the attacker controlled domain.l

An attacker could try accessing various internal services by modifying the Host header to target internal IPs or
services.

•

•

•

•

CONFIDENTIAL Example Application 9

https://www.invicti.com/learn/host-header-attacks/
https://portswigger.net/web-security/host-header

The header was set to a range of internal IP addresses from 192.168.0.0 to 192.168.0.255 The IP
192.168.0.170 resulted in a status code 302 as shown below. This confirmed the presence of a reachable
internal service.

The response displayed the path /admin in the Location header revealing an internal admin page.

HTTP/2 302 Found
Location: /admin
X-Frame-Options: SAMEORIGIN
Content-Length: 0

By exploiting the Host header SSRF vulnerability, it was possible to access the admin page and admin endpoints
such as /admin/users/delete/<id> without authentication.

Recommendation

Ensure that the application validates and sanitizes the Host header before using it in any internal requests.
Only allow trusted and predefined host values to be processed. Reject any requests with suspicious or
unexpected host values, such as 127.0.0.1, localhost, or internal IP ranges that are not meant to be exposed.

Restrict access to internal services (e.g., database servers, metadata services) by using firewall rules, network
segmentation, or authentication mechanisms. Internal services should be isolated from external HTTP
requests or should require strong authentication.

To prevent routing-based attacks on internal infrastructure, you should configure your load balancer or any
reverse proxies to forward requests only to a whitelist of permitted domains.

•

•

•

CONFIDENTIAL Example Application 10

H1: Session Fixation

Score 8.1 (High)

Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N

Target POST /login

References
https://cheatsheetseries.owasp.org/cheatsheets/
Session_Management_Cheat_Sheet.html

Overview
A security flaw was discovered in the application’s session management system, allowing an attacker to force a
victim to use a predetermined session ID. This could let attackers hijack the victim’s session and access their
account without needing their login credentials. Using this technique, an attacker might gain control over
administrative accountsl.

This vulnerability can result in:

Unauthorized access to user accounts and theft of sensitive data.

Loss of user trust and potential regulatory violations.

Details
The application was found to be vulnerable to a Session Fixation attack. Upon initiating a session (e.g., visiting
the login page), the session ID (session_id) remains unchanged after successful authentication. This allows an
attacker to set a session ID for the victim and later hijack the session once the victim logs in.

The application does not generate a new session ID after authentication, making it possible for an attacker to
predetermine the session ID and gain unauthorized access to the victim’s account.

Proof of Concept:

Attacker Sets a Session ID:
The attacker initiates a session with the application and notes the session ID (e.g., session_id=abc123).

GET /login HTTP/1.1
Host: example.com
Cookie: session_id=abc123

Victim Uses the Predetermined Session ID:
The attacker tricks the victim into using the same session ID (e.g., by embedding a link in an email):

•

•

1.

2.

CONFIDENTIAL Example Application 11

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

Click here to log in

Victim Logs In:
The victim logs in with valid credentials, and the application does not change the session ID.

Attacker Hijacks the Session:
The attacker then uses the same session ID (abc123) to access the victim's authenticated session:

GET /dashboard HTTP/1.1
Host: example.com
Cookie: session_id=abc123

The attacker gains access to the victim’s account.

Recommendation

Ensure that the application generates a new, unique session ID upon successful login.

Set session cookies with the HttpOnly and Secure flags to prevent client-side access and ensure cookies are
transmitted over HTTPS.

Use the SameSite attribute to restrict cookies from being sent in cross-site requests.

Implement short session expiration times and enforce automatic logout after periods of inactivity.

Educate users to avoid clicking on suspicious links that might contain predetermined session IDs.

3.

4.

•

•

•

•

•

CONFIDENTIAL Example Application 12

M1: Missing or Incorrectly Configured HTTP Security Headers

Score 5.4 (Medium)

Vector string CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:L/A:N

Target *

References https://infosec.mozilla.org/guidelines/web_security#content-security-policy

Overview
During the penetration test it was found that the web application either lacked essential HTTP security headers
or had them configured insecurely. HTTP security headers play a crucial role in enhancing a web application's
security. They help mitigate risks associated with vulnerabilities like cross-site scripting, clickjacking, information
disclosure, and others, either making them harder to exploit or preventing them entirely.

Without properly configured HTTP security headers, the web application's attack surface is expanded, increasing
the likelihood of an attacker exploiting client-side vulnerabilities.

Details
The following table provides an overview over which headers were set correctly and which were not:

Content-Security
Policy (CSP)

Referrer-
Policy

HTTP-Strict-Transport-
Security (HSTS)

X-Content-Type-
Options

X-Frame-
Options

Permissions-
Policy

⚠️ ❌ ✅ ✅ ❌ ❌

Legend:
❌ Header was not set
⚠️ Header was set but requires further configuration
✅ Header was set correctly

Modern browsers offer robust support for various HTTP security headers that help enhance the security of web
applications by mitigating client-side vulnerabilities like clickjacking, cross-site scripting (XSS), and other
common attacks. These headers are part of the HTTP response, guiding browsers on which security measures to
enable or disable during communication with a server. By defining these security-related details, HTTP headers
strengthen the overall resilience of web applications against potential threats.

Content Security Policy: The Content Security Policy header enables granular control over the sources from
which a browser can load resources. This header is particularly effective at preventing cross-site scripting
(XSS) attacks by restricting unauthorized content execution.

•

CONFIDENTIAL Example Application 13

https://infosec.mozilla.org/guidelines/web_security#content-security-policy

Referrer Policy. The Referrer-Policy header governs how and when browsers share the Referer header
with target pages. This header provides information about the source of an HTTP request, such as when users
navigate via a link or load external resources, helping to protect privacy and control information flow.

HTTP Strict Transport Security (HSTS). The HSTS header instructs browsers to interact with a web application
exclusively over HTTPS, ensuring secure connections. It also prevents users from bypassing certificate-related
errors by strictly enforcing transport layer security.

X-Content-Type-Options. The X-Content-Type-Options header ensures that browsers only execute scripts
and stylesheets with the correct MIME types specified by the server. Without this header, MIME sniffing may
occur, where files are misinterpreted as scripts or stylesheets, potentially leading to XSS vulnerabilities.

X-Frame-Options The X-Frame-Options header determines if and how a web page can be embedded within
an iframe. This helps defend against clickjacking attacks, where malicious overlays trick users into performing
unintended actions on legitimate pages. Although this header is marked as deprecated, it can still be
beneficial for older browsers.

Permissions policy The Permissions-Policy header allows developers to control the availability and
behavior of specific browser features and APIs. Similar to CSP, it focuses on managing browser functionalities
rather than overarching security behavior.

These HTTP security headers play an essential role in reducing attack surfaces and safeguarding user
interactions on the web.

Recommendation

The application contains a Content Security Policy (CSP) which is missing clickjacking protection. It is
recommended to set the frame-ancestors directive to none if you do not want your site to be framed, or
self if you want to allow it to frame itself.

Restrict the referrer policy to prevent potentially sensitive information from being exposed to third party
sites. You should define the header as follows: Referrer-Policy: strict-origin-when-cross-origin .

Do not allow the web page to be included in a frame. Set X-Frame-Options: DENY for this. Alternatively you
can restrict this setting to the same-origin with X-Frame-Options: SAMEORIGIN .

Restrict the use of sensitive browser features such as the camera, microphone or speaker using
Permissions-Policy headers. Set it and disable all the features that your site does not need or allow them
only to the authorized domains: Permissions-Policy: geolocation=(), camera=(), microphone=()
This example is disabling geolocation, camera, and microphone for all domains.

•

•

•

•

•

•

•

•

•

CONFIDENTIAL Example Application 14

M2: User Enumeration

Score 5.3 (Medium)

Vector string CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Target POST /login

References

https://owasp.org/www-project-web-security-testing-guide/stable/4-
Web_Application_Security_Testing/03-Identity_Management_Testing/04-
Testing_for_Account_Enumeration_and_Guessable_User_Account

https://blog.rapid7.com/2017/06/15/about-user-enumeration/

Overview
While assessing the web application, a user enumeration vulnerability was found. User enumeration is a common
vulnerability in web applications that occurs when an attacker can use brute force techniques to determine valid
user accounts in a system.

Although user enumeration is a low risk in itself, it still provides an attacker with valuable information for
follow-up attacks such as in brute force and credential stuffing attacks or in social engineering campaigns.

Details
The login mechanism was found to be vulnerable to user enumeration due to differing timing in responses
based on the validity of the username. This behavior allows an attacker to enumerate valid usernames by
observing the application's responses. The issue arises because the application processes valid and invalid
usernames differently, such as by checking the password for valid accounts or terminating the request earlier for
nonexistent usernames.

Proof of Concept:

100 requets with valid and 100 requests with invalid usernames were sent to the login endpoint. Afterwards the
timings of all requests were compared.

Login request with existing user:

POST /login HTTP/1.1
Host: example.com
Content-Type: application/json

{ "username": "existingUser", "password": "wrongPassword" }

•

•

CONFIDENTIAL Example Application 15

https://owasp.org/www-project-web-security-testing-guide/stable/4-%20Web_Application_Security_Testing/03-Identity_Management_Testing/04-%20Testing_for_Account_Enumeration_and_Guessable_User_Account
https://owasp.org/www-project-web-security-testing-guide/stable/4-%20Web_Application_Security_Testing/03-Identity_Management_Testing/04-%20Testing_for_Account_Enumeration_and_Guessable_User_Account
https://owasp.org/www-project-web-security-testing-guide/stable/4-%20Web_Application_Security_Testing/03-Identity_Management_Testing/04-%20Testing_for_Account_Enumeration_and_Guessable_User_Account
https://blog.rapid7.com/2017/06/15/about-user-enumeration/

Login request with nonexisting user:

POST /login HTTP/1.1
Host: example.com
Content-Type: application/json

{ "username": "nonexistingUser", "password": "anyPassword" }

Timing for login requests:

Timing Duration(s)

valid max 1340

valid min 754

valid average 943.20

invalid max 410

invalid min 296

invalid average 326.91

The response time for invalid usernames was consistently shorter (~327ms) compared to valid usernames
(~943ms). This timing difference can be exploited using automated tools to identify valid usernames.

Recommendation

Ensure that the web application always returns generic error messages when invalid usernames, passwords,
or other credentials are entered.

Login or Password-Reset operations should take the same amount of time, even if the user account for which
they should be done does not exist.

This is best achieved by emulating all time-consuming operations that would be done in the case of a
valid user account, such as hashing a dummy password instead of immediately returning.

If it is not possible to properly emulate an operation, it can be approximated by using a sleep function
that has been tuned to take a similar amount of time than the operation in question.

If possible, run time consuming functions asynchronously.

•

•

◦

◦

◦

CONFIDENTIAL Example Application 16

M3: Web Cache Deception

Score 5.3 (Medium)

Vector string CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:N/A:N

Target GET /account

References

https://cwe.mitre.org/data/definitions/525.html

https://portswigger.net/daily-swig/path-confusion-web-cache-deception-threatens-
user-information-online

https://www.invicti.com/web-vulnerability-scanner/vulnerabilities/web-cache-
deception/

Overview
The application was vulnerable to web cache deception, where an attacker could trick the caching mechanism
into storing sensitive user-specific pages such as the account dashboard as publicly accessible cached content.
This could allow unauthorized users to access private information leading to data theft.

Details
The application did not properly validate or differentiate user-specific responses before storing them in the
cache. During testing, it was observed that sensitive, user-specific pages could be cached and served to other
users when specific URL patterns or query strings were manipulated.

This vulnerability occurs because the application relies solely on the URL or headers to determine cacheability
and does not account for whether the response contains sensitive user data. An attacker could exploit this by
crafting URLs that appear cacheable, causing private content to be cached by the server or intermediate proxies
and accessible to other users.

Proof of Concept:

If an authenticated user navigated to the https://example.com/account page, the response contained
sensitive information such as

<h2>Welcome, Firstname Lastname!</h2>
...
<p>Balance: €7,532.05</p>

•

•

•

CONFIDENTIAL Example Application 17

https://cwe.mitre.org/data/definitions/525.html
https://portswigger.net/daily-swig/path-confusion-web-cache-deception-threatens-user-information-online
https://portswigger.net/daily-swig/path-confusion-web-cache-deception-threatens-user-information-online
https://www.invicti.com/web-vulnerability-scanner/vulnerabilities/web-cache-deception/
https://www.invicti.com/web-vulnerability-scanner/vulnerabilities/web-cache-deception/

Craft a malicious request:

Modifying the URL to append a non-standard extension (e.g., .css, .jpg, or .txt) tricked the caching mechanism
into treating the response as a static resource:

https://example.com/account.css

The server processed the request and responded with the same sensitive content as the original /dashboard
page. This response was treated as cacheable because of the .css extension. Additionally, the Cache-Control
headers in the response allow caching:

Cache-Control: public, max-age=3600

Retreiving sensitive information:

If a victim was tricked into visiting the maliciously crafted URL and it was cached, an attacker could visit the
same page to retreive sensitive information displayed on that page.

To test this, the page was opened on a different browser. The server responded with the cached content from the
original user's session.

<h2>Welcome, Firstname Lastname!</h2>
...
<p>Balance: €7,532.05</p>

Recommendation

Ensure that sensitive, user-specific pages (e.g., /account) include proper Cache-Control headers, set with the
directives no-store and private .

Implement strict rules to determine which pages are cacheable. Avoid caching responses for URLs that
include sensitive content or non-standard file extensions.

If a CDN is used, configure it to respect cache-control headers and prevent unintended caching of dynamic
content.

Verify that there aren't any discrepancies between how the origin server and the cache interpret URL paths.

•

•

•

•

CONFIDENTIAL Example Application 18

L1: Verbose Error Messages

Score 3.7 (Low)

Vector string CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

Target

POST /search

POST /profile

Get /<invalid_path>

References https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

Overview
The tested application exposed detailed error messages when unexpected inputs were provided. These
messages can reveal sensitive information about the system's internal workings, such as server configuration,
database structure, or code logic.

While this issue did not allow direct exploitation, it potentially:

Assists attackers in identifying the database type, server software, and code structure.

Increases the likelihood of future attacks such as SQL Injection, Remote Code Execution (RCE), or Local File
Inclusion (LFI).

Provides useful information for reconnaissance.

Details
During testing, it was found that certain application endpoints expose verbose error messages when unexpected
inputs are provided. These messages include potentially sensitive details such as:

Stack traces that reveal file paths, function names, or application code structure.

Web server or framework version information.

Operating system details

Such information disclosure can help an attacker gather reconnaissance on the application’s backend, increasing
the likelihood of successful exploitation in future attacks.

Proof of Concept:

Stack Trace Disclosure

Request:

•

•

•

•

•

•

•

•

•

CONFIDENTIAL Example Application 19

https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html

GET /search?test= HTTP/1.1
Host: example.com
Content-Type: application/json

{ "username": "test", "password": {"malformed":} }

Response:

NullPointerException at com.example.auth.LoginHandler.handleRequest(LoginHandler.java:42)

This response reveals specific implementation details, including the file name and line number.

Exposing Web Server Configuration Details

Request:

GET /invalid-path HTTP/1.1
Host: example.com

Response:

HTTP/1.1 500 Internal Server Error
Server: Apache/2.4.46 (Ubuntu)
Date: Thu, 28 Nov 2024 15:30:00 GMT
Content-Type: text/html; charset=UTF-8
Content-Length: 345

Error: FileNotFoundException at /var/www/html/index.php in Line 20

Details Exposed:
Server Version: Apache/2.4.46 (Ubuntu)
Operating System: Ubuntu
File Paths: /var/www/html/index.php
Error Type: FileNotFoundException\

Recommendation

Ensure that the application displays generic error messages such as "An error occurred. Please try again later."

Configure the application to log detailed error messages internally but display only minimal information to
end users.

Implement a global exception handler to catch all unhandled exceptions and ensure a uniform, safe error
message is returned.

Log detailed error messages to a secure log file for internal debugging purposes only.

•

•

•

•

CONFIDENTIAL Example Application 20

	PENETRATION TEST REPORT
	Example Application

	Table of Contents
	Team
	List of Changes
	Disclaimer
	Executive Summary
	Overview
	Identified Vulnerabilities
	Vulnerability Overview

	Methodology and Scope
	Exclusions (Out of Scope)
	User Accounts and Permissions

	Findings
	C1: Blind SQL Injection in Password Reset Endpoint
	Overview
	Details
	Proof of concept:
	Demonstration of Data Extraction:

	Recommendation

	C2: HTTP Host Header SSRF
	Overview
	Details
	Recommendation

	H1: Session Fixation
	Overview
	Details
	Proof of Concept:

	Recommendation

	M1: Missing or Incorrectly Configured HTTP Security Headers
	Overview
	Details
	Recommendation

	M2: User Enumeration
	Overview
	Details
	Proof of Concept:
	Login request with existing user:
	Login request with nonexisting user:
	Timing for login requests:

	Recommendation

	M3: Web Cache Deception
	Overview
	Details
	Proof of Concept:
	Craft a malicious request:
	Retreiving sensitive information:

	Recommendation

	L1: Verbose Error Messages
	Overview
	Details
	Proof of Concept:
	Stack Trace Disclosure
	Exposing Web Server Configuration Details

	Recommendation

